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Overview

This guide provides essential tips and steps to help developers set up their IDE to help them code Yellowfin supported plugins, widgets, advanced
functions, and more.

Setting up your IDE
Here's a step-by-step tutorial to help you set up your development environment.

. Download and set up Eclipse for EE developers. Note: This is Yellowfin's recommendation, but you can use your preferred IDE.
. Install the Tomcat plugin, if it isn't already bundled with the installation.

. Install the version of Yellowfin to be used for development. Note: We suggest getting the latest version for increased productivity.
. Start up Yellowfin to extract the WAR file.
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Create a Plugin Project
These steps will help you to create a new project for your Java plugin.
1. On starting Eclipse, create a new Java project.

a. Enter the project name and ensure you select a JRE compatible with your version of Yellowfin.
b. Click Next and change the default output folder to <project-name>/ROOT/WEB-INF/classes.


https://marketplace.eclipse.org/content/eclipse-tomcat-plugin

2.

c. Click Finish.

ﬂ Mew Java Project

Java Settings

Define the Java build settings.
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b. Select File System and click Next.
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d. Select everything under ROOT and in the Advanced section, select the Create links in workspace checkbox.
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e. Click Finish. Files from the installed Yellowfin will be linked to this project.
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Configure the Project

Follow these steps to configure your project.

1. Right-click on the project and select Build Path > Configure Build Path from the menu. Then select the Libraries tab.
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2. Click the Add JARs button and type "i4" into the search bar. From the results, select i4-core.jar and i4-mi.jar from your plugin project.
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Choose the archives to be added to the build path:
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3. Click OK to save this and OK again in the build path config window.
4. Under the WEB-INF/src folder, create a new folder and call it META-INF. Create a new folder called services within this one.

v :ﬂ = WEB-IMF/=src
v [ META-INF
[ services




5. Depending on which plugin is being developed, create a file with the fully qualified name of the plugin interface in the services directory. See the

table below for all available plugin options:

Yellowin Interface

Plugin
Transformation = com.hof.mi.etl.step.ETLStep
Step
Advanced com.hof.mi.interfaces.AnalyticalFunction
Function
Data Type com.hof.mi.interfaces.Converter
Converter
Custom com.hof.mi.interfaces.CustomFormatter
Formatter
Data Profiler com.hof.mi.interfaces.

DataSuggestionPlugin

Icon Set com.hof.mi.interfaces.lconSet
Third-Party com.hof.mi.thirdparty.interfaces.
Connector AbstractDataSource

Canvas Widget = com.hof.mi.widgetcanvas.interfaces.
CanvasObjectTemplate

Source com.hof.sources.SourcePlatform
Platform

Description

A step which may be used in the Data Transformation module.
Advanced functions used in Reports.

Conversion of data types, done at the View Level and in the Data
Transformation module.

Custom formatting used in Reports.

Profile data for a field. Contains functionality to determine whether the
implemented suggestion is applicable.

Defines an icon set for use with Report Alerts.

Connectors to create connections to external AP| data sources.
Custom widgets used in canvases in the Dashboard, Storyboard and Report
Design modules.

Define source types, such as JDBC, JNDI, OLAP etc.

a. For instance, if creating a Data Transformation Step, name your file ‘com.hof.mi.etl.step.ETLStep'.

v [ src
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=] com.hof.mi.etl.step.ETLStep

=& =

6. Create the plugin class by implementing one of the interfaces given above. The fully qualified classname should be added to the services file

corresponding to the interface.

So, for our Data Transformation Step example, add its fully qualified classname to META-INF/services/com.hof.etl.step.ETL Step.

[ Package... &3 =0

== =

v MyVellowfinPlugin A
w [ src

v f} com.company.yellowfin
[3] MyTransformationStep.java

v = META-IMNF

W [= services

|=| com.hof.mi.etl.step.ETLStep
=i JRE System Library [jre7]
=, Referenced Libraries
= .settings
v [ ROCT
= css
= customcss W

| com.hof.mi.etl.step ETLStep &3

1 I:Drr .company.yellowfin.MyTransformationStep

You can add further transformation steps below this line, if required.
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Configure Tomcat



The next step is to set up your Tomcat configuration.

1. Select Window > Preferences and go to the section for Tomcat.

@ Preferences m} X
type filter text Tomcat [CIg v
General Tomcat version
Ant O Version 3.3
Data Management Srsen 2
Help () Version 4.0
Install/Update O Version 4.1.x
Java () Version 5.
Java EE O Version 6.x
Java Persistence @ Version 7x
JavaScript
Maven
Mylyn
X Tomcat home | C\Users\admin\Yellowfin 7.4_20172911\appserver Browse...
Plug-in Development
PropertiesEditor
Remote Systems
Run/Debug Context declaration mode
Server
Sy () Serverxml
Team (®) Context files
Terminal Ch\Users\admin'Yellowfin 7.4 2911\appservericonfis
Tomcat
Validation Contexts directery | ellowfin 7.4_20172911\appserver\conf\Catalina\localhost Browse..,
Web
Weh Services
XML
Restore Defaults Apply

@ Cancel

2. Set Tomcat home to <Yellowfin Install directory>/appserver and Contexts directory to <Yellowfin Install directory>/appserver/conf/Catalina
/localhost.
3. Expand the Tomcat section in the left-side menu and click on Advanced. Add the plugin project to Tomcat's classpath.
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N Select All
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Soy
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Tomcat
Advanced
JVM Settings
Source Path
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Validation

Web

Web Services

XML

<

Restore Defaults Apply

)

4. Adjust JVM Settings, if necessary (through the JVM Settings option on the left side). Tip: You could use this to increase the memory available for
Tomcat.
5. Select Source Path (in the left side menu) and add the plugin project.



6. Click OK to save.
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JavaScript

Maven
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Plug-in Development
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Run/Debug
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Soy
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v Tomcat

Advanced
JVM Settings
Source Path
Tomcat Manager App

Validation

Web
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XML

Source Path

[ Automatically compute source path

Add Java projects to source path (Eclipse debugger will search for source files in these projects)

= MyYellowfinPlugin

Select All

Unselect All

Restore Defaults Apply

7. Start up Tomcat from Eclipse using the buttons in the toolbar.

8. The plugin will be now be available in Yellowfin.
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@ Changes to code get reflected instantly, except when:

® a method's signature is changed,
®* new methods/members are are added to the class,




® new classes are added to the plugin package.

In these cases, Tomcat must be restarted to apply changes.
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Packaging the Plugin

Once you've created your plugin, you will need to package it will all of its dependencies. The file extension should be in a specific file format that is
supported in Yellowfin.

1. Right-click on the project and select Export > JAR file.
2. Select only the package(s) to be exported and nothing else.

@) JAR Export m] x

JAR File Specification
Define which rescurces should be exported into the JAR,

Select the resources to export:

v IEL;‘J MyYellowfinPlugin A [ [ [%] .classpath
v [ G2 e [ [%] .project
[ 8 com.company.yellowfin
[ = META-INF
[ &= .settings
& rRoaT
[ = WEB-INF

Export generated class files and resources
[JExport all eutput folders for checked projects
O Export Java source files and resources

[] Export refacterings for checked projects. Select refactorings...

Select the export destination:

AR file: | ChUsers\admin'Desktop\MyTransformationftep.jar o Browse...

Options:
Compress the contents of the JAR file
[ Add directory entries

] Overwrite exi sting files without warning

3 .
H Bac M Finiz| ancel
® T coce

3. If the project has dependent JARs, put all of them and the Plugin JAR into one directory, zip into one archive, and give it the extension "yfp".

top

Debugging

Debugging is easy as the Eclipse Tomcat plugin starts Tomcat in the debug mode. Simply add breakpoints in code and ensure they are active.
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@ gson-2.8.1jar - C:\Users\admin\Yellowfin 7.4_20171031\appse TeRee .
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