Plugin Development Basics

® Overview

® Setting up your IDE
O Create a Plugin Project
© Configure the Project
© Configure Tomcat

® Packaging the Plugin

Debugging

Overview

This guide provides essential tips and steps to help developers set up their IDE to help them code Yellowfin supported plugins, widgets, advanced
functions, and more.

Setting up your IDE
Here's a step-by-step tutorial to help you set up your development environment.

. Download and set up Eclipse for EE developers. Note: This is Yellowfin's recommendation, but you can use your preferred IDE.
. Install the Tomcat plugin, if it isn't already bundled with the installation.

. Install the version of Yellowfin to be used for development. Note: We suggest getting the latest version for increased productivity.
. Start up Yellowfin to extract the WAR file.

A WNPE

Create a Plugin Project
These steps will help you to create a new project for your Java plugin.
1. On starting Eclipse, create a new Java project.

a. Enter the project name and ensure you select a JRE compatible with your version of Yellowfin.
b. Click Next and change the default output folder to <project-name>/ROOT/WEB-INF/classes.

https://marketplace.eclipse.org/content/eclipse-tomcat-plugin

2.

c. Click Finish.

ﬂ Mew Java Project

Java Settings

Define the Java build settings.

& Source 1= Projects =k Libraries . Order and Export

E‘% P | = ¥

v =8 MyVellowfinPlugin
8 src

w Details

{8 Create new source folder: use this if you want to add a new source folder to

your project,

BEE®

-~

@& Link additional source: use this if you have a folder in the file system that
should be used as additional scurce folder.

Q% Add project 'MyYellowfinPlugin' to build path: Add the project to the build
path if the project is the root of packages and source files, Entries on the build

path are visible to the compiler and used for buildina,

[allow output folders for scurce folders

Default cutput folder:

| W E LIS NLRR O OT/WEB-INF/ classes

Browse...

@ < Back Mext =

Import files from the installed Yellowfin instance:
a. Right-click on the project and select Import.

|X] .classpatt

File Edit Source L=z g
e g Go Into
LT :
. & Open in New Window
. J
i 2| | s ava ﬁ Open Type Hierarchy F4
[Package.. 2 Show In Alt+Shift+W
5 Copy Ctrl+C
v & MyYellowfinl £ Copy Qualified Name
& _IS}:\cE 5 _‘:; Paste Ctrl+V
] yste
(= .settings K Delete Delete
(= WEB-INF Remaove from Context

R .project Build Path b
: i Source Alt+5Shift+5 »
Refactor Alt+Shift+T »
f2g Import...
3 Export..
Eind Bugs »

Ctrl+Alt+Shift+ Down

b. Select File System and click Next.

&) Import O *
Select
- \J
Import resources from the local file system into an existing project. | g 5 I

Select an import source:

type filter text

[, File System ~
EL Preferences
= CVS
~ = EIB
G, EIB AR file
= Git
w [Install
'« From Existing Installation
'« Install Software ltems from File

w = JavaEE
[, App Client JAR file
'E EAR file
=i, Java EE Utility Jar
@ RARfile
2 Waeen v
@ < Back Finizh Cancel
¢. Navigate to appserver/webapps/ROOT in the Yellowfin install directory. Select ROOT and click OK.
@ import m] X
File system L=
Source must net be empty.
-
From directery: V| Browse...
Impert from directory *
Select a directory to import fram.
A4 Yellowfin 7.4_.20172911 ~
v appserver
bin
BirtResources
conf
Filter Types... Select A lib
logs
| Into folder: | MyYellowfinPlug temp Browse...
Opticns v webapps
Ovenwrite exdsting resourc > RoOT
[Create top-level folder o
customess
Advanced = > .
customimages
images
includes
is Y
5 ROOT
@ Bolder: Cancel
i o= S - | Make New Folder I [0]4 Cancel -

d. Select everything under ROOT and in the Advanced section, select the Create links in workspace checkbox.

ﬂ Import m} X

)

File system

Impert rescurces from the local file system,

[

From directory: | CovUsers\admintYellowfin 7.4_2017291 \appserveriwebapps\ROOT v‘ Browse...

—1
qa ROOT

calendar.html

|=| favicon.ico

Filter Types... Select All Deselect All
Into folder: | MyYellowfinPlugin Browse...
Opticns

Ovenwrite existing resources without warning
[Create top-level folder

<< Advanced

[[] Create virtual folders
Create link locations relative to: | PROJECT_LOC e

3 .

e. Click Finish. Files from the installed Yellowfin will be linked to this project.

top

Configure the Project

Follow these steps to configure your project.

1. Right-click on the project and select Build Path > Configure Build Path from the menu. Then select the Libraries tab.

I8 Properties for MyYellowfinPlugin [m| X

| Java Build Path MR
Resource R X
Builders (# Source 1= Projects B Libraries g Order and Export
Coverage JARs and class folders on the build path:
FindBugs =, JRE Systemn Library [jre7] Add JARs...
Java Build Path -
Java Code Style Add External JARs...
Java Compiler
Java Editor Add Variable...
Javadoc Location Add Libra
Project Facets 0=
Project References Add Class Folder...

PropertiesEditor

Run/Debug Settings Add External Class Folder...

Task Repository

Task Tags Edit...
Tomcat

Validation Remove
WikiText

Migrate JAR File...

2. Click the Add JARs button and type "i4" into the search bar. From the results, select i4-core.jar and i4-mi.jar from your plugin project.

i@} J4R Selection] *

Choose the archives to be added to the build path:

id-|
v 24 MyVellowfinPlugin
w = ROQT
v = WEB-INF
v = lib

% i4-adapter,jar
|£| ¥4-content.jar
[£] 4-core jar

| & i4-ip.jar

| 5| i4-jsps.jar

[%] i4-mi.jar

3. Click OK to save this and OK again in the build path config window.
4. Under the WEB-INF/src folder, create a new folder and call it META-INF. Create a new folder called services within this one.

v :ﬂ = WEB-IMF/=src
v [META-INF
[services

5. Depending on which plugin is being developed, create a file with the fully qualified name of the plugin interface in the services directory. See the

table below for all available plugin options:

Yellowin Interface

Plugin
Transformation = com.hof.mi.etl.step.ETLStep
Step
Advanced com.hof.mi.interfaces.AnalyticalFunction
Function
Data Type com.hof.mi.interfaces.Converter
Converter
Custom com.hof.mi.interfaces.CustomFormatter
Formatter
Data Profiler com.hof.mi.interfaces.

DataSuggestionPlugin

Icon Set com.hof.mi.interfaces.lconSet
Third-Party com.hof.mi.thirdparty.interfaces.
Connector AbstractDataSource

Canvas Widget = com.hof.mi.widgetcanvas.interfaces.
CanvasObjectTemplate

Source com.hof.sources.SourcePlatform
Platform

Description

A step which may be used in the Data Transformation module.
Advanced functions used in Reports.

Conversion of data types, done at the View Level and in the Data
Transformation module.

Custom formatting used in Reports.

Profile data for a field. Contains functionality to determine whether the
implemented suggestion is applicable.

Defines an icon set for use with Report Alerts.

Connectors to create connections to external AP| data sources.
Custom widgets used in canvases in the Dashboard, Storyboard and Report
Design modules.

Define source types, such as JDBC, JNDI, OLAP etc.

a. For instance, if creating a Data Transformation Step, name your file ‘com.hof.mi.etl.step.ETLStep'.

v [src

f% Package.. i [2 TypeHie.. .g°CallHier.. [5iProblems = O

v 2 MyVellowfinPlugin

v [= META-IMF
w [services
=] com.hof.mi.etl.step.ETLStep

=& =

6. Create the plugin class by implementing one of the interfaces given above. The fully qualified classname should be added to the services file

corresponding to the interface.

So, for our Data Transformation Step example, add its fully qualified classname to META-INF/services/com.hof.etl.step.ETL Step.

[Package... &3 =0

== =

v MyVellowfinPlugin A
w [src

v f} com.company.yellowfin
[3] MyTransformationStep.java

v = META-IMNF

W [= services

|=| com.hof.mi.etl.step.ETLStep
=i JRE System Library [jre7]
=, Referenced Libraries
= .settings
v [ROCT
= css
= customcss W

| com.hof.mi.etl.step ETLStep &3

1 I:Drr .company.yellowfin.MyTransformationStep

You can add further transformation steps below this line, if required.

top

Configure Tomcat

The next step is to set up your Tomcat configuration.

1. Select Window > Preferences and go to the section for Tomcat.

@ Preferences m} X
type filter text Tomcat [CIg v
General Tomcat version
Ant O Version 3.3
Data Management Srsen 2
Help () Version 4.0
Install/Update O Version 4.1.x
Java () Version 5.
Java EE O Version 6.x
Java Persistence @ Version 7x
JavaScript
Maven
Mylyn
X Tomcat home | C\Users\admin\Yellowfin 7.4_20172911\appserver Browse...
Plug-in Development
PropertiesEditor
Remote Systems
Run/Debug Context declaration mode
Server
Sy () Serverxml
Team (®) Context files
Terminal Ch\Users\admin'Yellowfin 7.4 2911\appservericonfis
Tomcat
Validation Contexts directery | ellowfin 7.4_20172911\appserver\conf\Catalina\localhost Browse..,
Web
Weh Services
XML
Restore Defaults Apply

@ Cancel

2. Set Tomcat home to <Yellowfin Install directory>/appserver and Contexts directory to <Yellowfin Install directory>/appserver/conf/Catalina
/localhost.
3. Expand the Tomcat section in the left-side menu and click on Advanced. Add the plugin project to Tomcat's classpath.

@ Preferences m] X

type filter text Advanced @ T

General

Ant

Data Management Tomcat base | Browse...
Help

Install/Update

Java [Launch Tomcat using Security Manager

Java EE

Java Persistence

JavaSeript Add Java projects te Tomcat classpath

Maven =
Mylyn ’
Plug-in Development
PropertiesEditor
Remote Systems
Run/Debug]

N Select All

Unselect All

Server

Soy

Team

Terminal

Tomcat
Advanced
JVM Settings
Source Path
Tomcat Manager App

Validation

Web

Web Services

XML

<

Restore Defaults Apply

)

4. Adjust JVM Settings, if necessary (through the JVM Settings option on the left side). Tip: You could use this to increase the memory available for
Tomcat.
5. Select Source Path (in the left side menu) and add the plugin project.

6. Click OK to save.

@ Preferences

type filter text

General

Ant

Data Management

Help

Install/Update

Java

Java EE

Java Persistence

JavaScript

Maven

Mylyn

Plug-in Development

PropertiesEditor

Remote Systems

Run/Debug

Server

Soy

Team

Terminal

v Tomcat

Advanced
JVM Settings
Source Path
Tomcat Manager App

Validation

Web

Web Services

XML

Source Path

[Automatically compute source path

Add Java projects to source path (Eclipse debugger will search for source files in these projects)

= MyYellowfinPlugin

Select All

Unselect All

Restore Defaults Apply

7. Start up Tomcat from Eclipse using the buttons in the toolbar.

8. The plugin will be now be available in Yellowfin.

File Edit Source Refactor Mavig
- ‘ i
Cir M EE N
I
Yollow
Aggregate
This step provides ag

incoming data

Calculated Field

Filter

This step is for filtering da

culated field
d on cther.

My Transformation Step
Plugin Transformation Step

-

Data Preview Panel

Select a step to output

@ Changes to code get reflected instantly, except when:

® a method's signature is changed,
®* new methods/members are are added to the class,

® new classes are added to the plugin package.

In these cases, Tomcat must be restarted to apply changes.

top

Packaging the Plugin

Once you've created your plugin, you will need to package it will all of its dependencies. The file extension should be in a specific file format that is
supported in Yellowfin.

1. Right-click on the project and select Export > JAR file.
2. Select only the package(s) to be exported and nothing else.

@) JAR Export m] x

JAR File Specification
Define which rescurces should be exported into the JAR,

Select the resources to export:

v IEL;‘J MyYellowfinPlugin A [[[%] .classpath
v [G2 e [[%] .project
[8 com.company.yellowfin
[= META-INF
[&= .settings
& rRoaT
[= WEB-INF

Export generated class files and resources
[JExport all eutput folders for checked projects
O Export Java source files and resources

[] Export refacterings for checked projects. Select refactorings...

Select the export destination:

AR file: | ChUsers\admin'Desktop\MyTransformationftep.jar o Browse...

Options:
Compress the contents of the JAR file
[Add directory entries

] Overwrite exi sting files without warning

3 .
H Bac M Finiz| ancel
® T coce

3. If the project has dependent JARs, put all of them and the Plugin JAR into one directory, zip into one archive, and give it the extension "yfp".

top

Debugging

Debugging is easy as the Eclipse Tomcat plugin starts Tomcat in the debug mode. Simply add breakpoints in code and ensure they are active.

@ Debug - MyVellowfinPlugin/src/com/company/yellowfin/MyTransfarmationStep.java - Eclipse
File Edit Refactor e Search Project Tomcat Window Help

o= ¥ E AR AN

Run

=

Source

=:>I|

G-

OO R T G e

Quick Acc

J ﬁl & Java 5 Debug [Git 4 FindBugs

(= seftings

[% Package... 2 Type Hie Call Hier... Problems = O com.hofmi.etl.step.ETLStep m MyTransformationStep java 22 =
BES|e 7 P b Bsc b B com.compenyyellowdin b (B MyTransformationStep b @ gethlame() : String
v 52 MyVellowfinPlugin ~ publie String getDefaultMame() {
v e Gson g = new Gson():
v [com.company.yellowfin return getMame () ;
1] MyTransformationStep.java
(= META-INF
B JRE System Library [jre7] public String getName () {
+ m Referenced Libraries return StringUtils.decapitalize("My Transformation Step4”):
@ i4-corejar
@: i4-mi.jar
@ gson-2.8.1jar - C:\Users\admin\Yellowfin 7.4_20171031\appse TeRee .
publie String getDefaultDescription() {

return "Plucin Trapsformation Step":

& %5 Debug &2
% O
~l -

= q
=

(==

v o Daemon Thread [http-nio-338

&= owns: NicEndpeintSNieSo
= MyTransformationStep.get
MyTransfermationStep.get
MativelMethadAccessarimy
NativehMethadAccessormy
DelegatinghethodAccessc
= Method.invoke(Object, Ob
UtilComparater.compare(l
= TimSort<T> binarySert(T[]

	Plugin Development Basics

